Convergence in Almost Periodic Fisher and Kolmogorov Models

نویسندگان

  • Wenxian Shen
  • Yingfei Yi
چکیده

We study convergence of positive solutions for almost periodic reaction diffusion equations of Fisher or Kolmogorov type. It is proved that under suitable conditions every positive solution is asymptotically almost periodic. Moreover, all positive almost periodic solutions are harmonic and uniformly stable, and if one of them is spatially homogeneous, then so are others. The existence of an almost periodic global attractor is also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forbidden Substrings, Kolmogorov Complexity and Almost Periodic Sequences

Assume that for some α < 1 and for all nutural n a set Fn of at most 2 “forbidden” binary strings of length n is fixed. Then there exists an infinite binary sequence ω that does not have (long) forbidden substrings. We prove this combinatorial statement by translating it into a statement about Kolmogorov complexity and compare this proof with a combinatorial one based on Laslo Lovasz local lemm...

متن کامل

Sequences close to periodic

The paper is a survey of notions and results related to classical and new generalizations of the notion of a periodic sequence. The topics related to almost periodicity in combinatorics on words, symbolic dynamics, expressibility in logical theories, algorithmic computability, Kolmogorov complexity, number theory, are discussed.

متن کامل

Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state

The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing  m-almost everywhere convergence, where  m...

متن کامل

KPP invasions in periodic media: lecture notes for the Toulouse KPP school

with a smooth function μ(x) that is 1-periodic in all variables xj, j = 1, . . . , n. This equation is known as the Fisher-Kolmogorov-Petrovskii-Piskunov, or Fisher-KPP equation, and was introduced in 1937 by Fisher, and KPP, in their two respective papers, Fisher’s paper focusing on numerical and “applied tools” analysis, and KPP giving a rigorous mathematical treatment. Both papers were pione...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003