Convergence in Almost Periodic Fisher and Kolmogorov Models
نویسندگان
چکیده
We study convergence of positive solutions for almost periodic reaction diffusion equations of Fisher or Kolmogorov type. It is proved that under suitable conditions every positive solution is asymptotically almost periodic. Moreover, all positive almost periodic solutions are harmonic and uniformly stable, and if one of them is spatially homogeneous, then so are others. The existence of an almost periodic global attractor is also discussed.
منابع مشابه
Spatial Patterns Described by the Extended Fisher-kolmogorov (efk) Equation: Periodic Solutions
متن کامل
Forbidden Substrings, Kolmogorov Complexity and Almost Periodic Sequences
Assume that for some α < 1 and for all nutural n a set Fn of at most 2 “forbidden” binary strings of length n is fixed. Then there exists an infinite binary sequence ω that does not have (long) forbidden substrings. We prove this combinatorial statement by translating it into a statement about Kolmogorov complexity and compare this proof with a combinatorial one based on Laslo Lovasz local lemm...
متن کاملSequences close to periodic
The paper is a survey of notions and results related to classical and new generalizations of the notion of a periodic sequence. The topics related to almost periodicity in combinatorics on words, symbolic dynamics, expressibility in logical theories, algorithmic computability, Kolmogorov complexity, number theory, are discussed.
متن کاملIndividual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state
The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing m-almost everywhere convergence, where m...
متن کاملKPP invasions in periodic media: lecture notes for the Toulouse KPP school
with a smooth function μ(x) that is 1-periodic in all variables xj, j = 1, . . . , n. This equation is known as the Fisher-Kolmogorov-Petrovskii-Piskunov, or Fisher-KPP equation, and was introduced in 1937 by Fisher, and KPP, in their two respective papers, Fisher’s paper focusing on numerical and “applied tools” analysis, and KPP giving a rigorous mathematical treatment. Both papers were pione...
متن کامل